Radiomics Analysis of Multiparametric PET/MRI for N- and M-Staging in Patients with Primary Cervical Cancer.

Abstract

Purpose: The aim of this study was to investigate the potential of multiparametric 18F-FDG PET/MR imaging as a platform for radiomics analysis and machine learning algorithms based on primary cervical cancers to predict N- and M-stage in patients. Materials and Methods: A total of 30 patients with histopathological confirmation of primary and untreated cervical cancer were prospectively enrolled for a multiparametric 18F-FDG PET/MR examination, comprising a dedicated protocol for imaging of the female pelvis. The primary tumor in the uterine cervix was manually segmented on post-contrast T1-weighted images. Quantitative features were extracted from the segmented tumors using the Radiomic Image Processing Toolbox for the R software environment for statistical computing and graphics. 45 different image features were calculated from non-enhanced as well as post-contrast T1-weighted TSE images, T2-weighted TSE images, the ADC map, the parametric Ktrans, Kep, Ve and iAUC maps and PET images, respectively. Statistical analysis and modeling was performed using Python 3.5 and the scikit-learn software machine learning library for the Python programming language. Results: Prediction of M-stage was superior when compared to N-stage. Prediction of M-stage using SVM with SVM-RFE as feature selection obtained the highest performance providing sensitivity of 91 % and specificity of 92 %. Using receiver operating characteristic (ROC) analysis of the pooled predictions, the area under the curve (AUC) was 0.97. Prediction of N-stage using RBF-SVM with MIFS as feature selection reached sensitivity of 83 %, specificity of 67 % and an AUC of 0.82. Conclusion: M- and N-stage can be predicted based on isolated radiomics analyses of the primary tumor in cervical cancers, thus serving as a template for noninvasive tumor phenotyping and patient stratification using high-dimensional feature vectors extracted from multiparametric PET/MRI data.

Click the Cite button above to demo the feature to enablevisitors to import publication metadata into their reference management software.
Felix Nensa
Felix Nensa
Lead

My research interests include medical digitalization, computer vision and radiology.